Chapter 4
-
Associativity of AND and OR is shown in Tables 4-3 and 4-4 in the book.
-
AND and OR identity values
x x ∧ 1 0
0
1
1
x x ∨ 0 0
0
1
1
-
AND and OR commutativity
x y x∧y y∧x 0
0
0
0
0
1
0
0
} 1
0
0
0
1
1
1
1
x y x∨y y∨x 0
0
0
0
0
1
1
1
} 1
0
1
1
1
1
1
1
-
AND distributive over OR
x y z (y∨z) (x∧y) (x∧z) (x∧(y∨z) (x∧y)∨(x∧z) 0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
1
0
1
0
0
0
0
0
1
1
1
0
0
0
0
1
0
0
0
0
0
0
0
1
0
1
1
0
1
1
1
1
1
0
1
1
0
1
1
1
1
1
1
1
1
1
1
-
AND annulment
x x ∧ 0 0
0
1
0
-
Involution of NOT
x (¬x) ¬(¬x) 0
1
0
1
0
1
-
OR distributive over AND is shown in Table 4-5 in book.
-
OR annulment value
x x ∨ 1 0
1
1
1
-
AND and OR complements
x ¬x x ∧ ¬x 0
1
0
1
0
0
x ¬x x ∨ ¬x 0
1
1
1
0
1
-
AND and OR idempotency
x x∧x 0
0
1
1
x x∨x 0
0
1
1
-
-
De Morgan’s law
x y (x∧y) ¬(x∧y) ¬x ¬y ¬x ∨ ¬y 0
0
0
1
1
1
1
0
1
0
1
1
0
1
1
0
0
1
0
1
1
1
1
1
0
0
0
0
x y (x∨y) ¬(x∨y) ¬x ¬y ¬x ∧ ¬y 0
0
0
1
1
1
1
0
1
1
0
1
0
0
1
0
1
0
0
1
0
1
1
1
0
0
0
0
-
Let a 4-bit integer be wxyz where each literal represents one bit. The even 4-bit integers are given by the function:
F(w,x,y,z) = (¬w ∧ ¬x ∧ ¬y ∧ ¬z) ∨ (¬w ∧ ¬x ∧ y ∧ ¬z) ∨ (¬w ∧ x ∧ ¬ y ∧ ¬z) ∨ (¬w ∧ x ∧ y ∧ ¬z) ∨ (w ∧ ¬x ∧ ¬y ∧ ¬z) ∨ (w ∧ ¬x ∧ y ∧ ¬z) ∨ (w ∧ x ∧ ¬y ∧ ¬z) ∨ (w ∧ x ∧ y ∧ ¬z)
Using the distributive property repeatedly we get:
F(w,x,y,z) = ¬z ∧ ((¬w ∧ ¬x ∧ ¬y) ∨ (¬w ∧ ¬x ∧ y) ∨ (¬w ∧ x ∧ ¬ y) ∨ (¬w ∧ x ∧ y) ∨ (w ∧ ¬x ∧ ¬y) ∨ (w ∧ ¬x ∧ y) ∨ (w ∧ x ∧ ¬y) ∨ (w ∧ x ∧ y))
= ¬z ∧ (¬w ∧ ((¬x ∧ ¬y) ∨ (¬x ∧ y) ∨ (x ∧ ¬ y) ∨ (x ∧ y)) ∨ w ∧ ((¬x ∧ ¬y) ∨ (¬x ∧ y) ∨ (x ∧ ¬ y) ∨ (x ∧ y)))
= ¬z ∧ (¬w ∨ w) ∧ ((¬x ∧ ¬y) ∨ (¬x ∧ y) ∨ (x ∧ ¬ y) ∨ (x ∧ y))
= ¬z ∧ (¬w ∨ w) ∧ (¬x ∧ (¬y ∨ y) ∨ x ∧ (¬ y ∨ y))
= ¬z ∧ (¬w ∨ w) ∧ (¬x ∨ x) ∧ (¬ y ∨ y)
And from the complement property we arrive at a minimal sum of products:
F(w,x,y,z) = ¬z
a simple NOT gate with the least significant bit as input.
-
Using a Karnaugh map,
We get the equation:
F(x,y,z) = (¬z) ∨ (¬x ∧ ¬y) ∨ (x ∧ y)
-
Using a Karnaugh map,
We get the equation:
¬F(x,y,z) = (¬x ∨ ¬y) ∧ (¬y ∨ ¬z) ∧ (y ∨ z)
-
xy horizontal
-
xz horizontal
-
Five variables
-
The single-digit prime numbers are 2, 3, 5, and 7. Using four bits to represent them:
F(w,x,y,z) = (¬w ∧ ¬x ∧ y ∧ ¬z) ∨ (¬w ∧ ¬x ∧ y ∧ z) ∨ (¬w ∧ x ∧ ¬ y ∧ z) ∨ (¬w ∧ x ∧ y ∧ z)
Assuming that the numbers 0, 1, 10, 11, 12, 13, 14, and 15 will never occur, we can use a Karnaugh map to simplfy the equation:
This gives us the minimization:
F(w,x,y,z) = (¬w ∧ ¬x) ∨ (x ∧ z)