Chapter 5
- Using NOR gates.
-
Using truth tables
x x ¬(x ∨ x) 0
0
1
1
1
0
we can design a NOT gate,
-
an AND gate,
x y ¬x ¬y ¬(¬x ∨ ¬x) 0
0
1
1
0
0
1
1
0
0
1
0
0
1
0
1
1
0
0
1
-
and an OR gate
x y ¬(x ∨ x) ¬(¬(x ∨ x)) 0
0
1
0
0
1
0
1
1
0
0
1
1
1
0
1
-
-
We start with a truth table showing when x is below y, F(x,y)
x1 x0 y1 y0 F(x,y) 0
0
0
0
0
0
0
0
1
1
0
0
1
0
1
0
0
1
1
1
0
1
0
0
0
0
1
0
1
0
0
1
1
0
1
0
1
1
1
1
1
0
0
0
0
1
0
0
1
0
1
0
1
0
0
1
0
1
1
1
1
1
0
0
0
1
1
0
1
0
1
1
1
0
0
1
1
1
1
0
F(x,y) can be implemented with NAND gates: