Chapter 5

  1. Using NOR gates.
    • Using truth tables

      x x ¬(x ∨ x)
      0 0 1
      1 1 0

      we can design a NOT gate,

    • an AND gate,

      x y ¬x ¬y ¬(¬x ∨ ¬x)
      0 0 1 1 0
      0 1 1 0 0
      1 0 0 1 0
      1 1 0 0 1

    • and an OR gate

    x y ¬(x ∨ x) ¬(¬(x ∨ x))
    0 0 1 0
    0 1 0 1
    1 0 0 1
    1 1 0 1

  2. We start with a truth table showing when x is below y, F(x,y)

    x1 x0 y1 y0 F(x,y)
    0 0 0 0 0
    0 0 0 1 1
    0 0 1 0 1
    0 0 1 1 1
    0 1 0 0 0
    0 1 0 1 0
    0 1 1 0 1
    0 1 1 1 1
    1 0 0 0 0
    1 0 0 1 0
    1 0 1 0 0
    1 0 1 1 1
    1 1 0 0 0
    1 1 0 1 0
    1 1 1 0 0
    1 1 1 1 0

    F(x,y) can be implemented with NAND gates: